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acceleration factor may be obtainable with a shorter, less flexible 
tether between the catalytic group and the binding pocket. 

These experiments are a first step toward the development of 
selective catalysts which combine the high binding affinity and 
specificity of the immune system with the diverse, efficient catalytic 
groups available from synthetic chemistry. 
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(19) Sodium acetate (0.1 M) was used as the buffer in the range of pH 
4.5-6.0, morpholineethanesulfonic acid (0.1 M) in the range of pH 5.0-7.0, 
sodium phosphate (0.1 M) in the range of pH 6.0-8.0 and tris-HCl (0.1 M) 
in the range of pH 7-9. These experiments were carried out at 30 0C in the 
presence of 1 /xM modified antibody and 20 nM ester lb. 
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There has been considerable interest in recent years in the 
development of mechanism-based inhibitors and their subsequent 
utilization as enzyme probes and as potential therapeutic agents.1'2 

A novel type of mechanism-based inhibitor is one that generates 
an electrophilic species via an enzyme-induced rearrangement. 
The one and only example reported so far3 involves an enzyme-
induced allyl sulfoxide-allyl sulfenate ester 2,3-sigmatropic re­
arrangement. We now present evidence that 3-benzyl-Ar-((me-
thylsulfonyl)oxy)succinimide 1 and related compounds4 inactivate 
a-chymotrypsin and human leukocyte elastase (HLE), an enzyme 
of considerable clinical interest,5,6 via an enzyme-induced Lossen 
rearrangement and according to the mechanism depicted in 
Scheme I.7 

In earlier biochemical studies8 we demonstrated that compound 
1 is a time-dependent irreversible inactivator of a-chymotrypsin 
and HLE and that the inactivation involves the active site. The 
chemical competence of the steps shown in Scheme I was also 
established. Thus, reaction of equivalent amounts of 1 and 
NaOCH3/CH3OH (room temperature/1 h) resulted in the for-
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Figure 1. 13C NMR spectra of labeled 1 and chymotrypsin. A: 2 mM 
1 in D2O (7.5% DMSO); B: 2 mM 1 plus 2 mM chymotrypsin in D2O 
(7.5% DMSO); C: 2 mM unlabeled 1 plus 2 mM chymotrypsin in D2O 
(7.5% DMSO); D: difference spectrum of B and C. All spectra were 
run on a Bruker 500 MHz instrument using the following conditions: 54° 
pulse, 0.6 s repetition period, 14000 scans, broad band 1H decoupling, 
and 20 Hz line broadening. In all spectra the large multiplet at 39.5 ppm 
is due to DMSO. 
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mation of a mixture of two isomeric Lossen rearrangement 
products.4 Furthermore, amino acid-derived isocyanates such as, 
L-norvaline methyl ester isocyanate, for example, have been shown 
to inactivate HLE and chymotrypsin rapidly and irreversibly.9'10 
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Scheme II. Synthesis of Compound I" 
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"(a) NaOEt/EtOH; (b) Br-CH2-*COOEt; (c) KOH/EtOH/H20; 
(d) Ac20/heat; (e) PHCH2ONH2/toluene/heat; (f) 10% Pd-C/H2/ 
THF; (g) CH3S02Cl/pyridine. 

In order to obtain direct evidence in support of the proposed 
tentative mechanism of Scheme I, high resolution 13C NMR was 
utilized." Thus, compound 1, labeled at C-5 (99%), was syn­
thesized according to Scheme II.8 Incubation of equivalent 
amounts of 1 with a-chymotrypsin led to the appearance of two 
new signals at 176 and 126 ppm (Figure 1 (parts B and D)). The 
13C NMR spectrum of the inhibitor shows a peak at 173 ppm in 
the same solvent system (Figure IA). The signal at 176 ppm is 
interpreted to arise from enzyme-inhibitor adduct 3, while the 
signal at 126 ppm arises from an enzyme-generated isocyanate. 
It appears that the sharp signal at 126 ppm is due to free iso­
cyanate, formed by deacylation of intermediate 2 (Scheme I). This 
assignment is supported by the fact that incubation of chymo-
trypsin or HLE with unlabeled inhibitor 1 in the presence of an 
external nucleophile results in partial protection of the enzyme.8 

Futhremore, imidazole-TV-carboxamides and isocyanates give rise 
to signals at around 170 and 126 ppm, respectively. For example, 
the signal for the imidazole-TV-carboxamide obtained from the 
reaction of ethyl 3-isocyanatopropionate with imidazole appears 
at 171 ppm (DMSCW6), while the signal of the isocyanate carbon 
of L-norvaline methyl ester isocyanate appears at 126.5 ppm. 

The spectrum of the 1 mM solution of chymotrypsin in D2O 
shows, among other signals, signals at 129-132 ppm. Hence, the 
signals appearing at 129-132 ppm in Figure 1 (parts B and C) 
are due to the enzyme. 

In order to eliminate the likelihood of any extraneous inter­
ferences, the spectrum of the enzyme with unlabeled 1 was also 
recorded under identical conditions (Figure IC). Lastly, inhibitor 
1 is stable indefintely under the conditions used to record the NMR 
spectra (as monitored by HPLC). 

In summary, the chemical shift data presented establish une­
quivocally that inhibitor 1 is a novel type of mechanism-based 
inhibitor that inactivates chymotrypsin and other serine proteases 
via an enzyme-induced Lossen rearrangement. The data also 
validate the biochemical rationale involved in the design of this 
class of inhibitors.8 
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Recently, Kunin and Eisenberg2 then Tanaka3 and others4 have 
reported that various /«w,y-RhCl(CO)L2 (L = a trialkyl- or 
triarylphosphine) serve as photocatalysts for carbonylation and 
other C-H activation pathways of certain hydrocarbons (e.g., eq 
1). Of these the trialkylphosphine complexes have been shown 

Ph-H + CO 
RhCl(CO)L2 

- Ph-CHO (1) 

to be effective even for alkane activation.3,4 Herein are reported 
results of the flash photolysis investigation of two representative 
complexes, rra/w-RhCl(CO)(PMe3)2 (I) and fro«5-RhCl(CO)-
(P(tolyl)3)2 (II, tolyl = P-CH3C6H4-). In benzene under argon, 
I and II each gave transients with spectral properties and kinetics 
behavior implying photoinduced CO dissociation followed by 
reversible insertion of the tricoordinate intermediate into the 
solvent C-H bond. In cyclohexane only I showed such behavior. 
These observations contrast sharply with those described previously 
for the case where L = PPh3 (III),

5 for which the initial transients 
formed under analogous flash photolysis conditions do not undergo 
observable reaction with benzene. 

Flash photolysis (Xirr > 330 nm) of I in deaerated benzene 
solution under argon6 led to the immediate formation7 of a 
transient (A) with increased absorption in the spectral region 
400-500 nm. This species decayed exponentially (fca = (6.2 ± 
2.0) X 103 s"1) to a second species with a smaller absorbance than 
I over the same spectral region. Finally, this bleached transient 
(B) underwent slow, first-order decay to the initial spectrum with 
kb = (3.8 ± 0.6) X 10"2 s"1. Under these conditions, analogous 
temporal spectral changes were observed for flash photolysis of 
II with the exceptions that fca((5.9 ± 1.5) x 102 s"1) proved to 
be an order of magnitude smaller and kb(4.4 ± 0.8 s_1) two orders 
of magnitude faster. 

In contrast, the behaviors of the two systems differed markedly 
when flashed in deaerated cyclohexane. For I the sequential 
formation of absorbing and bleached transients were again seen, 
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(6) (a) Extensive continuous photolysis of II under the same conditions 
shows no net photodecomposition of the metal complex, (b) The flash pho­
tolysis apparatus is that described previously (ref 5c). A methyl ethyl ketone 
solution was used as a UV-vis filter. All solvents used were scrupulously 
deaerated by freeze/pump/thaw cycles and dried by distillation from a Na/K 
amalgam. All solutions were prepared by vacuum manifold techniques. 

(7) The formation of A has been studied by picosecond flash photolysis in 
the laboratory of T. L. Netzel of Amoco Research Corp. (Netzel, T. L.; 
Pourreau, D. B., manuscript in preparation. Netzel, T., private communi­
cation). These studies demonstrated that the decay of excited states and/or 
other intermediates to give A occurs on a subnanosecond time scale. 
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